

Hard part turning with CBN

Choose the right solution

Since it was first introduced as a cutting tool material in the 1980s, the use of cubic boron nitride (CBN) has evolved to become a common machining solution. The application areas include hardened steels, cast irons, heat resistant super alloys (HRSA) and powdered metals. These workpiece materials have one thing in common; they are generally recognised as being difficult to machine.

A CBN insert can withstand the high cutting temperatures and forces and still retain its cutting edge. This is why CBN delivers long, consistent tool life and produces components with excellent surface finish.

Sandvik Coromant offers a comprehensive program of unique CBN products for finish turning of case hardened steels. In this brochure you will find the correct grade, geometry and edge preparation for your application. Whatever your component design or surface finish requirements we will deliver high productivity and outstanding quality.

Did you know...

...that CBN is the second hardest known material in the world; the hardest being diamond. This, in addition to many other extreme properties makes it the ideal cutting tool material for hard, abrasive workpieces. CBN has greater chemical and thermal stability than diamond, which dissolves in iron and has a maximum temperature limit of approximately 700°C (1300°F). In contrast, CBN is chemically inert in ferrous materials and retains its hardness at temperatures in excess of 1000°C (1800°F) which is typical for HPT.

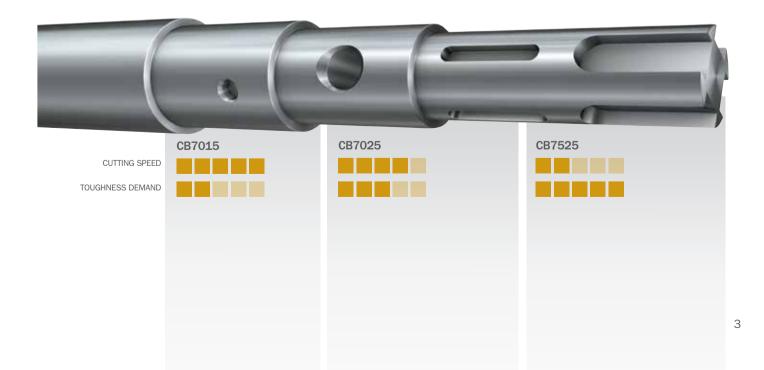
Contents

Choose the right solution	2
Choose the right geometry	
Choose the right edge preparation	8
CoroTurn® TR	10
Edge preparation guide	11
Additional insert families	14
Prepare for success	15
Tool wear	18
Hard part turning - assortment	20

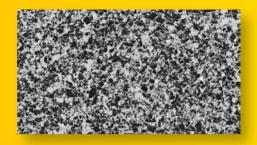
Choose the right grade

Each CBN grade in our hard part turning range has been specifically designed for high performance in finish turning of case hardened steels.

- CB7015 for continuous to light interrupted cutting
- · CB7025 for light to medium interrupted cutting
- CB7525 for heavy interrupted cutting


In order to select the most suitable grade, you must determine what type of cutting best describes your application. In the following pages we guide you through our CBN product range to find the best solution for your process.

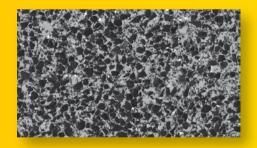
What is hard part turning?


Using a very broad definition hard part turning refers to hardened steels at 55 HRC and above. There are many different types of steel (carbon steels, alloy steels, tool steels, bearing steels etc.) that can achive these high levels of hardness. The common hardening methods are case hardening, induction hardening and through hardening. Hard part turning is usually a finishing or semi-finishing process with high dimensional accuracy and surface quality requirements.

Application areas

The illustration below helps you find the right grade for your application and relates to grade toughness and cutting speed capability.

CB7015

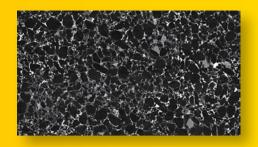


CB7015 contains 50% CBN with fine grain size in a unique ceramic binder. Maximum performance is achieved in continuous to light interrupted cutting where machine conditions are very stable. CB7015 is coated for easy wear detection.

Cutting data recommendations

Cutting speed, v _c m/min (ft/min)	50	(164)	100	(328)	150	(492)	200	(656)	250	(820)
Feed, f _n m/r (inch/r)	0.1	(0.0039)	0.2	(0.0079)	0.3	(0.0118)	0.4	(0.0157)	0.5	(0.0197)
Depth of cut, AP mm (inch)	0.1	(0.0039)	0.2	(0.0079)	0.3	(0.0118)	0.4	(0.0157)	0.5	(0.0197)
							=	Recomme	nded	starting value

CB7025



CB7025 is a unique, patented material (US 7670 980 B2) containing 60% CBN with a bimodal grain distribution ($1\&3 \mu m$) in a ceramic binder. High fracture resistance makes it a very versatile grade for hard part turning. It has excellent tool life in interrupted cutting and is also recommended for mixed production and when there is some instability in machine setup.

Cutting data recommendations

Cutting speed, v _c m/min (ft/min)	50	(164)	100	(328)	150	(492)	200	(656)	250	(820)
Feed, f _n m/r (inch/r)	0.1	(0.0039)	0.2	(0.0079)	0.3	(0.0118)	0.4	(0.0157)	0.5	(0.0197)
Depth of cut, AP mm (inch)	0.1	(0.0039)	0.2	(0.0079)	0.3	(0.0118)	0.4	(0.0157)	0.5	(0.0197)
							I = I	Recommer	nded :	starting value

CB7525

CB7525 is a very tough grade and contains 90% CBN with fine grains in a ceramic binder. It is designed for grey cast iron machining and also performs well in hard part turning applications in heavy interrupted cuts (short contact time) as well as in very abrasive steels (tool steels, manganese steels).

Cutting data recommendations

Cutting speed, v _c m/min (ft/min)	50	(164)	100	(328)	150	(492)	200	(656)	250	(820)
Feed, f _n m/r (inch/r)	0.1	(0.0039)	0.2	(0.0079)	0.3	(0.0118)	0.4	(0.0157)	0.5	(0.0197)
Depth of cut, AP mm (inch)	0.1	(0.0039)	0.2	(0.0079)	0.3	(0.0118)	0.4	(0.0157)	0.5	(0.0197)
							= Re	ecommend	led st	tarting value

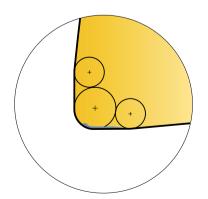
CB7925

CB7925 contains 75% CBN in a ceramic binder. It has a bimodal CBN grain size distribution with a mix of large and fine CBN grains (4 & 12 μ m). The main application area is high alloy cast irons but this grade will also perform well in turning of hardened steel and cast iron rolls. CB7925 CBN inserts are only available in solid format.

Cutting data recommendations

Cutting speed, v _c m/min (ft/min)	50	(164)	100 (328)	150 (492)	200	(656) 2	250	(820)
Feed, f _n m/r (inch/r)	0.1	(0.0039)	0.2 (0.0079)	0.3 (0.0118)	0.4	(0.0157)	0.5	(0.0197)
Depth of cut, AP mm (inch)	0.1	(0.0039)	0.2 (0.0079)	0.3 (0.0118)	0.4	(0.0157)	0.5	(0.0197)
					= Re	ecommende	ed st	tarting value

Choose the right geometry


The insert geometry and edge preparation are extremely important in hard part turning as they have a significant influence on tool life and productivity. The Sandvik Coromant CBN product range includes inserts with standard nose radius, wipers and the unique Xcel design. The standard nose radius generates the lowest cutting forces and has the lowest stability requirements while wipers and Xcel give an unbeatable combination of high productivity and excellent surface finish.

Standard nose radius

Insert nose radius is an important performance parameter:

- A small nose radius: 02, 04 mm (0.008-0.016 inch) provides good chip breaking.
- A large nose radius: 08, 12 mm (0.03-0.05 inch) generates better surface finish and produces thinner chips, which reduces the degree of crater wear in hard part turning operations.
- The combination of a large nose radius with small depth of cut results in reduced entry and exit forces.

In general, a large nose radius provides greater edge strength and therefore extended tool life. Use the largest nose radius allowed based on your process requirements.

Wiper

The Sandvik Coromant patented wiper designs -WH and -WG are based on a number of blended radii and have been developed specifically for HPT. Wiper insets provide two possibilities for process improvement:

- · Improved surface finish with standard cutting data.
- Maintained surface finish at substantially higher feed rate.

Xcel

The Xcel geometry has a straight cutting edge with a low entry angle. This produces thin chips and lower cutting temperatures, leading to reduced crater wear development. The benefits of Xcel are maximised when the entire cutting edge is used, so optimum performance is achieved on straight surfaces for one pass finishing at feed rate of 0.3 to 0.5 mm/r (0.012 to 0.02 inch/r). The maximum depth of cut is 0.25mm (.01 inch). It is possible to use eight cutting edges on an Xcel insert.

Insert geometries

The measured surface qualities below give an indication of what geometry to choose under specific conditions.

Hardness = 58-62 HRC AP = 0,15 mm(0.0059 inch) $v_{c} = 160 \text{ m/min}$ (525 ft/min)

1. Radius

 $f_{n}=0.1 \text{ mm/r}$ (0.0039 inch/r) r= 0.8 mm/

(0.0315 inch)

Ra 0.433 µm in 0.000017 Rz 1.72 µm in 0.000068

Standard geometry

- · Lowest requirements on stability
- Lowest cutting forces
- · Normal surface finish vs. feed

Why Hard Part **Turning?**

In the past, grinding was the common finishing process for hardened steel components. Today hard part turning is widely regarded as an efficient and cost effective alternative. Hard part turning can significantly boost productivity and at the same time deliver environmental benefits.

- High quality
- Reduced production time per component
- Process flexibility
- Lower machine investment costs
- Reduced energy requirements
- Coolant not required
- Easier swarf handling
- Possibility to recycle chips

2. Wiper

- $f_{n} = 0.2 \text{ mm/r}$ (0.0079 inch/r) *r*= 0.8 + WH
- (0.0315 inch + WH)

Ra 0.391 µm in 0.000015 Rz 1.67 µm in 0.000066

WH geometry

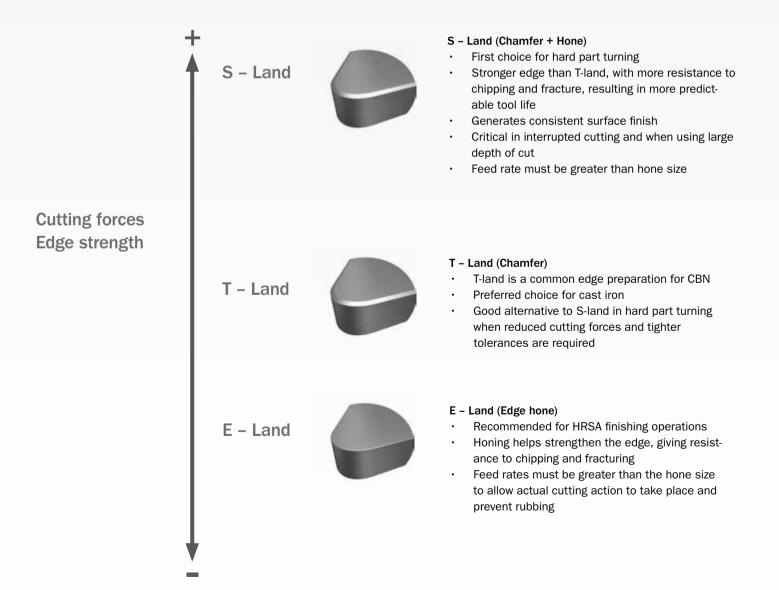
- Versatile first choice
- Low cutting forces
- Low requirements on stability
- Improved surface finish vs. feed

3. Xcel[™]

 $f_n=0.5 \text{ mm/r}$ (0.0197 inch/r)

Ra 0.935 µm in 0.000037 Rz 4.60 µm in 0.000181

Xcel Very high stability requirements


Good surface finish at high feed rate

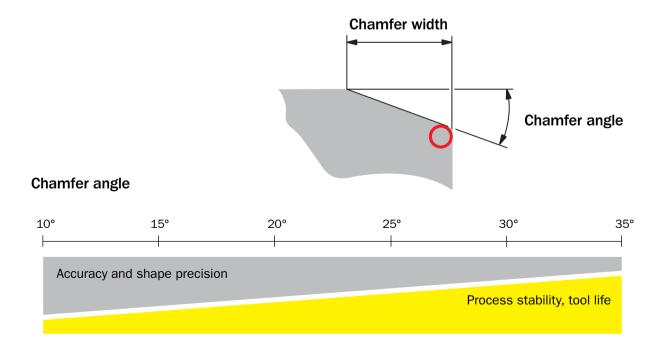
Choose the right edge preparation

The combination of the nose radius and the edge preparation has a significant influence on tool life, surface finish and integrity of the machined part. It is very important to select the chamfer size and edge condition best suited to your application.

Edge condition

There are three edge conditions available in the Sandvik Coromant CBN range:

Safe-Lok


The Safe-Lok tip on our negative inserts is a unique Sandvik Coromant concept. It provides a mechanical interlock in addition to brazing which gives additional strength and security in aggressive cutting conditions.

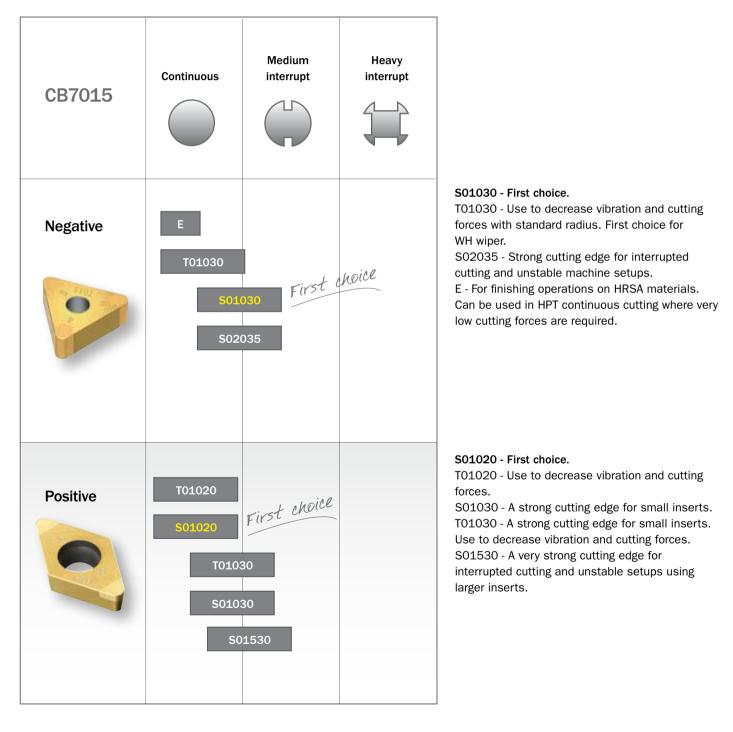
Chamfer angle and width

In general, the strength of the cutting edge on CBN inserts increases with increasing chamfer angle and width, but also results in increased cutting forces and temperature.

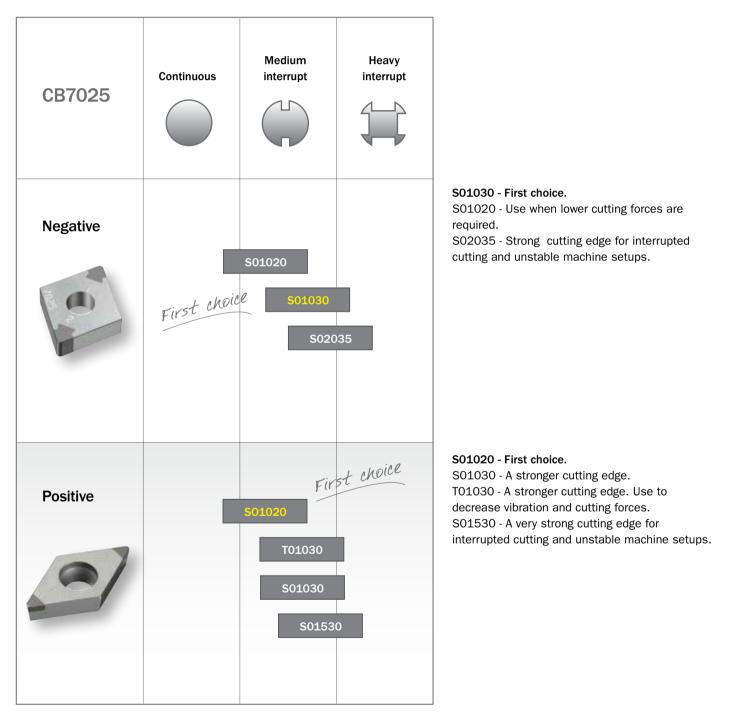
A wide chamfer spreads the cutting forces over a larger area, which provides a more robust cutting edge, allowing for higher feed rates. Where process stability and consistent tool life are the most important factors, the best solution will be obtained using a large chamfer.

If surface finish and dimensional accuracy are the main requirements, a small chamfer will provide the best results. Cutting forces and temperature will be reduced and there will be less vibration. In some cases, where surface finish is critical, a honed edge (E-land) can be beneficial, even though the tool life will be shorter. Since hard part turning is usually employed as a finishing operation, it is necessary to find the optimum edge design which produces high quality components and a stable production process with good tool life.

CoroTurn[®] TR


CoroTurn® TR provides a unique solution for high precision profiling of hardened steel components. The iLock interface ensures extremely secure and stable positioning of the insert in the seat. In this way, CoroTurn® TR eliminates micro-movement of the insert which can occur during profiling operations where the insert is subjected to multi-directional cutting forces when the tool path changes. CoroTurn® TR is available in CBN grades CB7015 and CB7025.

- · Maximum insert stability in the tool holder
- · Repeatable insert indexing
- · Closer tolerances and high quality surfaces
- Long, predictable tool life


Edge preparation guide

Edge Geometry Selection CB7015

Edge Geometry Selection CB7025

Even more edge geometry options are available through our Tailor Made program.

Edge Geometry Selection CB7525 (for ISO-H materials)

CB7525	Continuous	Medium interrupt	Heavy interrupt	
Negative			T01020 S01530	S02035 - First choice. S01530 - A strong edge when lower cutting forces are required. T01020 - Use for lowest cutting forces and to decrease vibration. First choice for cast iron.
		First choic		
Positive			T01020	S01030 - First choice. S01530 - A stronger cutting edge. T01020 - Use to reduce cutting forces and decrease vibration. First choice for cast iron.
		First choice	S01030 S01530	

CBN in other insert families

In addition to the general turning assortment our CBN range also includes inserts for parting and grooving, threading and small part machining available.

CoroCut® 1-2 System

CoroCut 1-2 is your first choice for parting, profiling and grooving. The system is based on a patented rail and V-shaped design which together with a long insert gives exceptional stability. This combination makes it possible to run at high cutting data and still achieve better productivity and close tolerances than any other system on the market. Use CoroCut inserts with -GE geometry for grooving and -RE for profiling. Insert widths available from 2.5 to 8.0 mm (0.1-0.3 inch) in grades CB7015 and CB20.

CoroThread ® 266

CoroThread[®] 266 delivers high precision threading performance. The unique iLock interface between the insert and the tip seat eliminates insert movement caused by cutting force vibration. Available in grade CB7015.

CoroTurn® XS

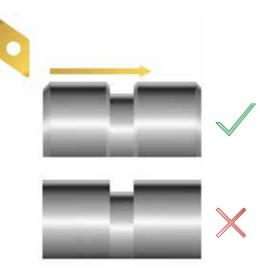
Precision inserts in small sizes, down to 7.0 mm (0.23 inch) for threading operations and 6.2 mm (0.24 inch) for grooving and threading. Its unique clamping system makes it reliable and easy to use. All CoroTurn XS grooving inserts produce grooves with flat bottom and sharp corner radii. Available in grade CB7015.

CoroCut® MB

CoroCut MB is a high-precision grooving, turning, and threading system for hole diameters from 10 mm (0.394 inch) and more. The edge line of the insert is sharp, and together with a thin-layered coating, it is suitable for internal machining. Available in grade CB7015.

Success with CoroCut[®]

- Cutting data start values
- speed: 120m/min (390 ft/min)
- feed: 0.04mm/r (.0016 inch/r)
- Use coolant for long cutting times
- Use short tool overhang
- Use largest possible insert seat size


Prepare for success

Component design and preparation

Careful preparation of the component in the soft (unhardened) state will benefit the hard part turning process. Due to the relatively small depths of cut used in hard part turning, tight dimensional tolerances in soft machining are key to achieving a consistent process. This delivers longer tool life and high quality components. The use of features such as chamfers and radii on the component will optimise entry and exit paths for maximum tool life.

Points to remember when planning your soft machining conditions include:


- Avoid burrs
- Keep close dimensional tolerances
- Chamfer and make radii in the soft state
- Do not enter or leave cut abruptly
- Enter or leave by programming radius movements

Component Clamping

Wide clamping jaws offer many benefits compared to ordinary three point jaws. This is particulary true for thin walled components which require extremely secure clamping.

The component should be as close as possible to the spindle bearings. As a general guideline, a length-to-diameter ratio of 2:1 is recommended for work-pieces supported on one end only, with acceptable maximum of 4:1. Where there is additional tailstock support, the ratio can be extended to 8:1. Correct alignment of the headstock and tailstock also adds to the rigidity of the setup.

Toolholder and insert clamping

Use Coromant Capto for maximum stability. Alternatively, carbide bars are preferred to steel bars, because of their inherent stiffness. Use a rigid tool with a large cross-section and keep the overhang as short as possible. The security and stability provided by the CoroTurn® RC clamping system is recommended for CBN inserts.

Wet or dry machining

Dry cutting is one of the key advantages of hard part turning. CBN inserts can tolerate cutting temperatures in excess of 1,000°C (1800°F). In general, the use of CBN in dry conditions has a positive effect on tool life, particularly in interrupted cutting.

Elimination of coolant:

- Reduces costs
- $\cdot\,$ Leads to easier chip handling
- · Is more environmentally friendly

However, there are some situations where coolant is required:

- $\cdot~$ To facilitate chip breaking
- $\cdot\;$ To control the thermal stability of the workpiece
- $\cdot\;$ To remove heat when machining big components

The coolant must always be applied as a consistent flow over the entire cutting length.

One or two cut strategy

When deciding between a one- or a two cut strategy, these factors must be considered:

- Machine capability
- · What the most important process measures are.

It is very often a balance between accuracy and productivity.

One-cut strategy

With a high quality machine tool and a stable setup, a single cut can produce acceptable levels of surface quality and dimensional tolerance.

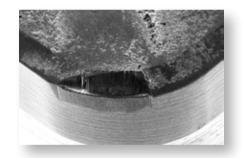
Two-cut strategy

When the machine setup is unstable, if there is any inconsistency in the component or if a very high final tolerance or surface quality is required, a two-cut strategy is likely to be the best option.

One-cut strategy

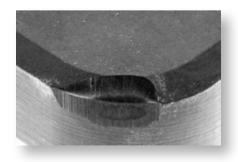
Two-cut strategy

Tool wear


In hard part turning the most common forms of CBN tool wear are crater and flank wear. The wear process depends on a number of factors:

- Workpiece material
- · CBN grade
- Cutting conditions
- Edge geometry
- Machine stability.

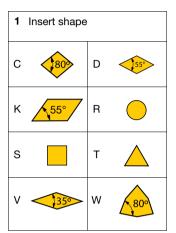
Crater wear

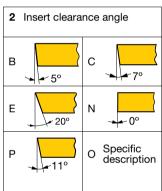

Crater wear is dominant when machining case hardened steels and is mainly caused by chemical wear, due to the extremely high temperature and the forces at the contact point between the workpiece and the CBN insert. Crater wear development weakens the cutting edge which can lead to inconsistent tool life.

Flank wear

Flank wear is more common at lower cutting speeds and when machining more abrasive steels such as bearing or tool steels. The primary wear mechanism is abrasion. Large flank wear has a negative effect on surface integrity and dimensional accuracy.

Even though wear is complex, there are ways to control it and maintain a consistent and reliable machining operation.


Troubleshooting recommendations


Tool wear	Solution
Flank wear	 Increase cutting speed. Increase feed.
Crater wear	 Reduce cutting speed. Increase feed.
Chipping	 Check stability, eliminate vibration. Do not use coolant. Use a stronger cutting edge; S-edge geometry Increase chamfer size (angle and /or width) Use larger nose radius.
Cracking /fracture	 Use uncoated inserts. Check stability, eliminate vibration. Check/ replace shim. Make sure tool is aligned to centre. Do not use coolant. Decrease feed. Decrease depth of cut. Use a stronger cutting edge; S-edge geometry Increase chamfer size (angle and /or width) Use larger nose radius. Use wiper.
Notch wear	 Increase speed. Reduce feed. Reduce/ vary depth of cut.

Code key

Metric

Inch

4 Insert type

XIX

XIX

А

G

М

Ν

Ρ

Class	S	IC / W1		
G	±0.13	±0.025		•
M	±0.13	$\pm 0.05 - \pm 0.05$. 15 1)	\triangle
U	±0.13	$\pm 0.08 - \pm 0.01$.25 ¹⁾	
E	±0.025	±0.025		+IC+
	depending on	the size of I	C. See	A
below.				
Inscribe	ed circle	Tolerance of	lass	
IC mm		М	U	
3.97	-			
5.0				
5.56				\frown
6.0		±0.05	±0.08	
6.35				
8.0				HC+
9.525				
10.0 12.0		±0.08	±0.13	Ļ
12.0		±0.00	±0.13	W1 /
15.875				↑
16.0		±0.10	±0.18	
19.05				_
20.0				
25.0		±0.13	±0.25	
25.4				s
31.75		±0.15	±0.25	.0
32.0		<u> </u>	L	
	itive inserts iC		sharp corne	er. See cutting
edge co	ondition F. (Pict	ure 8).		

C N G A 12 04 08

5

4 3 2 Т

5

6

6

7 8

7

8

03

9

9

20

10

4

Α

4

2 3

2 3

N G

1

С

1

3 Tolerances, metric

3	Tolerances,	inch	
	# B t	+ + + + +	A H
A:	inscribed ci		the insert
T: B:	Thickness of See figures	of the insert.	
Tolera	inces in inch		
Class	B:	A:	T:
Α	±.0002	±.001	±.001
B C	.0002	.001	.005
Ũ	.0005	.001	.001
D E	.0005 .001	.001 .001	.005 .001
F	.0002	.0005	.001
G	.001	.001	.005
Н	.0005	.0005	.001
J	.0002	.00200	
K	.0005	.00200	
L	.001	.00200	
M U	.002005		
N	.003012	.00301	
-			

T 010 20 R A WG

11

12

A WG

12

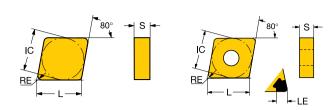
13

13

10

R

11

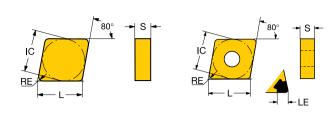

		5 Insert size										
		Inscribed circle, inch	Cutting ed	dge length,	, metrie	0						
					С	D	R	S	Т	V	W	к
	Q 🔀		IC mm	IC inch					\bigwedge_{\bullet}			
	R	Inscribed circle is indicated in	3.18 3.97 5.0	1/8" 5/32"			05 09		05 06			
		1/8".	6.0 6.35 8.0	1/4"	06	06 07	08		11	11		
	Т	Cutting edge length, inch	9.525 10.0 12.0	3/8"	09	11	09 10 12	09	16	16	06	16 ^{*)}
,	w 📉		12.7 15.875 16.0	1/2" 5/8"	12 16	15	12 15 16	12 15	22 27	22	08	
	×		19.0 20.0 25.0	3/4"	19		19 20 25 ¹⁾	19	33			
	X Creatial	For rectangular and rhombic inserts cutting edge length is indicated in	25.4 31.75 32	1" 1/4"	25		25 ²⁾ 31 32	25				
	Special design	mm.	is indicate	ase design	KNMX,	KNUX) only	the the	eoretica	l cutting	edge l	ength

20

6 Insert thickness, S mm, inch		7	Nose radius, RE mm	, inch	
				RE	
			Metric:	Inch:	Actual dimension:
Metric	Inch				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{l} 00 = 0\\ 01 = 0.1\\ 02 = 0.2\\ 04 = 0.4\\ 05 = 0.5\\ 08 = 0.8\\ 10 = 1.0\\ 12 = 1.2\\ 15 = 1.5\\ 16 = 1.6\\ 24 = 2.4\\ 32 = 3.2\\ Note: See exapped \\ \end{array}$	00 03 0 1 = $1/64$ 2 = $1/32$ 3 = $3/64$ 4 = $1/16$ 6 = $3/32$ 8 = $1/8$ Imple for approximati 16=1.6mm=.063 \approx .0	Round .004 .008 .0156 .0312 .047 .0625 .094 .125 on of metric nose radius. 0625 inch
8 Cutting edge cor	ndition	12	Insert Type (CBN)		
F	Sharp cutting edge	com	prising CBN and PC	hining demands to b D is manufactured. T a letter to denote the	e met, several types of inserts o easy identify the different types variants.
E (A)	ER treated cutting edge	A	CBN, Multi Corner - Fully indexable	Inserts	
	A (inch) E (metric)		,	m of the carbide carr	ier corners
Т	Negative land	В	CBN, Multi Corner - Fully indexable - CBN brazed to th		the carbide carrier corners.
К	Double negative lands				
S	Negative land and ER treated cutting edge	E	CBN, Single tip ins - Non-indexable - CBN brazed to th		arbide carrier corners
		F	CBN, Multi tip inse - Indexable	rts	
9 Chamfer width ISO mm	ANSI inch			ach corner of the cark	bide carrier
BN - 010 BN = 0.10 015 BN = 0.15 020 BN = 0.20 025 BN = 0.25 070 BN = 0.70 150 BN = 1.50 200 BN = 2.00	$\begin{array}{ll} 03 & BN = (.003) \\ 06 & BN = (.006) \\ 08 & BN = (.0078) \\ 08 & BN = (.0098) \\ 30 & BN = (.030) \\ 60 & BN = (.060) \\ 80 & BN = (.080) \end{array}$	D	CBN, Full top inser - Indexable - CBN sintered to t CBN, Solid inserts		ace of the carbide carrier
10 Chamfer angle, c	logroop		 Fully indexable Complete insert n 	node from CBN	
		13	Wiper Geometry		
GB 15 GB = 15° 20 GB = 20° 25 GB = 25°	30 GB = 30° 35 GB = 35°	gene	erate superior surfac		be used to boost productivity and
11 Hand of insert			Allows high feed ra Suitable for finish n	tes in HPT	e
Inserts designed solely for machining direction are indicated as below.	g in left or right	WH	Wiper geometry op Low cutting forces Designed for peak	timized for HPT for superior surface f performance at HPT	inish finishing feed rates
R Right hand desig	n		Allows the use of h Maintains surface f		other wiper geometries
L Left hand design					

Negative basic-shape inserts

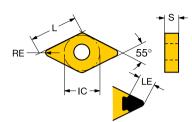
T-Max[®] P Rhombic 80°



								<		Н		
				LE	LE"	ISO CODE	7525	7925	7015	7025	7525 CB20	ANSI CODE
		12	1/2	2.6	.102	CNGX1204L025-18AXA			☆			CNGX1204L025-18AXA
							_					
		09	3/8	2.3 2.2	.091 .087	CNGA090304S01030AWH CNGA090308S01030AWH				☆☆		CNGA321S0330AWH CNGA322S0330AWH
		12	1/2	2.2	.110	CNGA120404S01030AWH			_	ਮ ਨ		CNGA32250530AWH CNGA431S0330AWH
60			172	2.7	.106	CNGA120408S01030AWH				☆		CNGA432S0330AWH
				2.0	.079	CNGA120408S02035AWH			☆	☆		CNGA432S0835AWH
				2.7	.106	CNGA120412S01030AWH				☆		CNGA433S0330AWH
		00	0./0	0.0	004				-			
		09	3/8	2.3 2.2	.091 .087	CNGA090304T01030AWH CNGA090308T01030AWH			☆ ☆			CNGA321T0330AWH CNGA322T0330AWH
		12	1/2	2.8	.110	CNGA120404T01030AWH			☆			CNGA431T0330AWH
60				2.7	.106	CNGA120408T01030AWH			☆	T		CNGA432T0330AWH
				2.7	.106	CNGA120412T01030AWH			☆			CNGA433T0330AWH
							_					
		12	1/2	2.7	.106	CNGA120408S01030AWG	_		☆	☆		CNGA432S0330AWG
		12	1/2	2.7	.106	CNGA120408501050AWG			_	ਮ ਨ		CNGA432S0S30AWG CNGA433S0330AWG
									~	~		
10												
Bu 🚽							_					
shi												
Finishing												
		12	1/2	2.8	.110	CNGA120404T01020BWG	547			4	The second se	CNGA431T0320BWG
		12	1/2	2.8 2.7	.110 .106	CNGA120404T01020BWG CNGA120408T01020BWG	な な				☆ ☆	CNGA431T0320BWG CNGA432T0320BWG
		12	1/2									
	•	12	1/2									
		12	1/2									
	•	12	1/2									
	•	12	3/8						☆	•		
	•			2.7	.106	CNGA120408T01020BWG						CNGA432T0320BWG
	•	09	3/8	2.7 2.3 2.2 2.0	.106 .091 .087 .079	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S01030A			\$			CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA322S0835A
	•>			2.7 2.3 2.2 2.0 1.8	.106 .091 .087 .079 .071	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A			\$			CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A
	> >	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8	.106 .091 .087 .079 .071 .110	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01030A			☆ ☆			CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0320A CNGA431S0330A
	> >	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 1.8	.106 .091 .087 .079 .071 .110 .071	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01030A CNGA120404S02035A			☆ ☆	· · · · · · · · · · · · · · · · · · ·		CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0330A CNGA431S0835A
	•> •>	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8	.106 .091 .087 .079 .071 .110 .071 .110	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01030A CNGA120404S02035A CNGA120404S02035B						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0835A CNGA431S0835A CNGA431S0835B
	•> •>	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 1.8 2.8	.106 .091 .087 .079 .071 .110 .071	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01030A CNGA120404S02035A				· · · · · · · · · · · · · · · · · · ·		CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0330A CNGA431S0835A
	•	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 1.8 2.8 2.0	.106 .091 .087 .079 .071 .110 .071 .110 .079 .106 .079	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01030A CNGA120404S02035B CNGA120404S02035B CNGA120408S01018A CNGA120408S01030A CNGA120408S01530B						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA431S0320A CNGA431S0320A CNGA431S0330A CNGA431S0835A CNGA431S0835B CNGA432S0318A CNGA432S0330A CNGA432S0330A CNGA432S0630B
	•	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 1.8 2.8 2.0 2.7 2.0 2.0	.106 .091 .087 .079 .071 .110 .071 .110 .079 .106 .079 .079	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01030A CNGA120404S02035B CNGA120408S01018A CNGA120408S01030A CNGA120408S01530B CNGA120408S01530B						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA431S0320A CNGA431S0320A CNGA431S0330A CNGA431S0835A CNGA431S0835B CNGA432S0318A CNGA432S0330A CNGA432S0330A CNGA432S0630B CNGA432S0630B CNGA432S0835A
	•	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 2.8 2.8 2.0 2.7 2.0 2.0 2.8	.106 .091 .087 .079 .071 .110 .071 .110 .079 .106 .079 .079 .079 .110	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120408S01030A CNGA120408S01030A CNGA120408S01530B CNGA120408S02035A CNGA120408S02035A						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA431S0320A CNGA431S0320A CNGA431S0835A CNGA431S0835B CNGA432S0318A CNGA432S0318A CNGA432S0330A CNGA432S0330A CNGA432S0330A CNGA432S0835A CNGA432S0835B
	•	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 2.8 2.0 2.7 2.0 2.7 2.0 2.0 2.8 2.3	.106 .091 .087 .079 .071 .110 .071 .110 .079 .106 .079 .079 .110 .091	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120408S01030A CNGA120408S01530B CNGA120408S01530B CNGA120408S02035A CNGA120408S02035A CNGA120408S02035B CNGA120408S02035B CNGA120408S02035B				☆☆☆☆☆☆☆☆		CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0330A CNGA432S0835B CNGA432S0835A CNGA432S0835B CNGA432S0835B CNGA433S0318A
	•	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 1.8 2.8 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.8 2.3 2.7	.106 .091 .087 .079 .071 .110 .071 .110 .079 .106 .079 .110 .091 .106	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120404S01030A CNGA120408S01030A CNGA120408S01530B CNGA120408S02035B CNGA120408S02035B CNGA120408S02035B CNGA120412S01018A CNGA120412S01030A						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0320A CNGA431S0835A CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0835B CNGA432S0835B CNGA432S0835B CNGA433S0318A CNGA433S0318A CNGA433S0330A
	•••	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 2.8 2.8 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.2 2.2 2.3	.106 .091 .087 .079 .071 .110 .071 .110 .079 .106 .079 .079 .110 .091	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120408S01030A CNGA120408S01530B CNGA120408S02035A CNGA120408S02035B CNGA120408S02035B CNGA120412S01018A CNGA120412S01030A CNGA120412S01030A CNGA120412S01030A						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0835A CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0835A CNGA432S0835B CNGA432S0835B CNGA432S0835B CNGA432S0835B CNGA433S0318A CNGA433S0318A CNGA433S0330A CNGA433S0330A
	 <td>09</td><td>3/8</td><td>2.7 2.3 2.2 2.0 1.8 2.8 1.8 2.8 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.8 2.3 2.7</td><td>.106 .091 .087 .079 .071 .110 .071 .110 .079 .110 .079 .079 .110 .091</td><td>CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120404S01030A CNGA120408S01030A CNGA120408S01530B CNGA120408S02035B CNGA120408S02035B CNGA120408S02035B CNGA120412S01018A CNGA120412S01030A</td><td></td><td></td><td></td><td></td><td></td><td>CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0320A CNGA431S0330A CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0835B CNGA432S0835B CNGA432S0835B CNGA433S0318A CNGA433S0318A CNGA433S0318A CNGA433S0330A</td>	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 1.8 2.8 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.8 2.3 2.7	.106 .091 .087 .079 .071 .110 .071 .110 .079 .110 .079 .079 .110 .091	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120404S01030A CNGA120408S01030A CNGA120408S01530B CNGA120408S02035B CNGA120408S02035B CNGA120408S02035B CNGA120412S01018A CNGA120412S01030A						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0320A CNGA431S0330A CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0835B CNGA432S0835B CNGA432S0835B CNGA433S0318A CNGA433S0318A CNGA433S0318A CNGA433S0330A
	 <td>09</td><td>3/8</td><td>2.7 2.3 2.2 2.0 1.8 2.8 2.8 2.8 2.8 2.8 2.0 2.7 2.0 2.0 2.0 2.0 2.2 2.3 2.3</td><td>.106 .091 .087 .079 .071 .110 .079 .079 .079 .079 .079 .079 .110 .091 .091 .091</td><td>CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120404S02035B CNGA120408S01030A CNGA120408S01530B CNGA120408S02035B CNGA120408S02035B CNGA120408S02035B CNGA120412S01030A CNGA120412S01030A CNGA120412S01030A CNGA120412S01530B CNGA120412S01530B CNGA120412S01530B</td><td></td><td></td><td></td><td></td><td></td><td>CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0835B CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0630B CNGA432S0835A CNGA433S0318A CNGA433S0318A CNGA433S0318A CNGA433S0330A CNGA433S0330A CNGA433S0330A</td>	09	3/8	2.7 2.3 2.2 2.0 1.8 2.8 2.8 2.8 2.8 2.8 2.0 2.7 2.0 2.0 2.0 2.0 2.2 2.3 2.3	.106 .091 .087 .079 .071 .110 .079 .079 .079 .079 .079 .079 .110 .091 .091 .091	CNGA120408T01020BWG CNGA090304S01030A CNGA090308S01030A CNGA090308S02035A CNGA120404S01020A CNGA120404S02035A CNGA120404S02035B CNGA120404S02035B CNGA120408S01030A CNGA120408S01530B CNGA120408S02035B CNGA120408S02035B CNGA120408S02035B CNGA120412S01030A CNGA120412S01030A CNGA120412S01030A CNGA120412S01530B CNGA120412S01530B CNGA120412S01530B						CNGA432T0320BWG CNGA321S0330A CNGA322S0330A CNGA322S0330A CNGA322S0835A CNGA431S0320A CNGA431S0330A CNGA431S0835B CNGA431S0835B CNGA432S0330A CNGA432S0330A CNGA432S0630B CNGA432S0835A CNGA433S0318A CNGA433S0318A CNGA433S0318A CNGA433S0330A CNGA433S0330A CNGA433S0330A

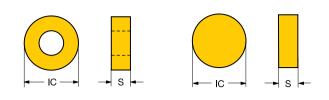
Negative basic-shape inserts

T-Max[®] P


Rhombic 80°

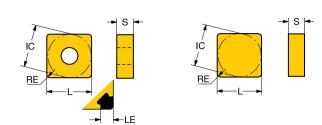
							ŀ	(Н			
				LE	LE"	ISO CODE	7525	7925	7015	7025	7525	CB20	ANSI CODE
		12	1/2	2.8		CNGA120404T01020B	\$				☆	-	CNGA431T0320B
				2.7		CNGA120408T01020B	\$			4	☆		CNGA432T0320B
				2.0		CNGA120408T01030A			☆				CNGA432T0330A
				2.7		CNGA120412T01020B	\$			4	☆	_	CNGA433T0320B
				2.3	.091	CNGA120412T01030A			☆			•	CNGA433T0330A
											_		
		10	1 /0									_	
		12	1/2	2.0		CNGA120408EA	_		☆				CNGA432AA
				2.3	.091	CNGA120412EA			\$2			-	CNGA433AA
-													
Ĩ													
Finishing		12	1/2	2.8	.110	CNMA120404S01020E					4	☆ (CNMA431S0320E
ιĒ			=	2.8		CNMA120408S01020E							CNMA432S0320E
	-			2.7		CNMA120412S01020E						☆ (CNMA433S0320E
		12	1/2			CNGN120412S02520M		졌				_	CNG433S0820M
						CNGN120416S02520M		☆				0	CNG434S0820M
	-												
	1	1				1							

Negative basic-shape inserts T-Max® P


Rhombic 55°

							κ		ŀ	1	
			~				-0	2	5		
		\square		LE	LE"	ISO CODE	7525	7015	7025	7525 CB2	ANSI CODE
		15	1/2	3.4	.134	DNGA150408S01030AWH		X2	Å		DNGA432S0330AWH
				2.1	.083	DNGA150408S02035AWH			\$		DNGA432S0835AWH
				3.0	.118	DNGA150412S01030AWH		公	\$		DNGA433S0330AWH
				2.4	.094	DNGA150412S02035AWH		\$			DNGA433S0835AWH
		11	3/8	1.8		DNGA110404S01020A			☆		DNGA331S0320A
				3.0		DNGA110404S01030A		☆	☆		DNGA331S0330A
				2.1		DNGA110408S01020A			☆		DNGA332S0320A
				2.6		DNGA110408S01030A		☆	☆		DNGA332S0330A
	and the second s			2.1		DNGA110408S02035A			☆		DNGA332S0835A
				2.2		DNGA110412S01030A		☆			DNGA333S0330A
		15	1/2	1.8		DNGA150404S01020A			☆		DNGA431S0320A
				3.8		DNGA150404S01030A		☆	☆		DNGA431S0330A
				1.8		DNGA150404S02035A			☆		DNGA431S0835A
				2.1		DNGA150408S01020A			☆		DNGA432S0320A
				3.4		DNGA150408S01030A		☆	☆	_	DNGA432S0330A
				2.1		DNGA150408S01530B				☆	DNGA432S0630B
				2.1		DNGA150408S02035A	_	☆.	☆.	_	DNGA432S0835A
5				3.0		DNGA150412S01030A		\$	☆		DNGA433S0330A
j <u>e</u> ,				2.4		DNGA150412S01530B	_			☆	DNGA433S0630B
Finishing				2.4		DNGA150412S02035A		\$	☆		DNGA433S0835A
Ē			0.10	2.9		DNGA150416S01030A	4	☆	☆		DNGA434S0330A
		11	3/8	3.4		DNGA110404T01020B	公			\$	DNGA331T0320B
	-			3.0	.118	DNGA110408T01020B	☆		_	☆	DNGA332T0320B
							_		_		
	the second second										
							_		_		
-		15	1/2	2.1	.083	DNGA150408EA		☆			DNGA432AA
		15	1/2	2.1		DNGA150408EA DNGA150412EA		X4 X4			DNGA432AA DNGA433AA
	-			2.4		DNGA150412EA DNGA150416EA		X} X			DNGA435AA DNGA434AA
	•			2.9	.114	DNGATS04T0EA		X			DINGA404AA
1		15	1/2	3.3	.130	DNMA150404S01020E				5/2	DNMA431S0320E
	10000	.0	1/2	2.9	.114	DNMA150408S01020E					DNMA43130320E
	1 and 1			2.6		DNMA150412S01020E					DNMA433S0320E

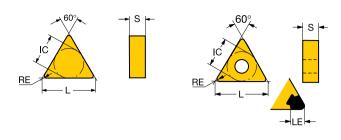
Negative basic-shape inserts ^{T-Max®}


Round

			ISO CODE	7925 🛪		CB50 F	ANSI CODE
	06		RNGN060300S02520M	☆			RNG22S1020M
			RNGN060400S02520M	☆			RNG23S1020M
	09		RNGN090300S02520M	☆			RNG32S1020M
	12		RNGN120300S02520M	☆			RNG42S1020M
			RNGN120400S02520M	☆			RNG43S1020M
ĝ	15		RNGN150400S02520M	☆	-		RNG53S1020M
'n	25		RNGN250400S02520M	☆			RNG83S1020M
Finishing	12		RNGN120400FD				7 RNG43FD
Medium	09	3/8	RNGA090300S01020D		☆		RNGA32S0320D

Negative basic-shape inserts T-Max® P

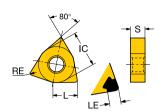
Square



							κ			Н	1		
								_					
						7525	325	B50	715	222	B	B2	ANSI CODE
	a •	l≠iC≯	LE		ISO CODE	75	ž				(C	0	
	09	3/8	2.1	.083	SNGA090308S01030A				\$	-			SNGA322S0330A
			1.4	.055	SNGA090308S02035B					Ŕ			SNGA322S0835B
			2.1		SNGA090312S02035B					Ň	7		SNGA323S0835B
	12	1/2	2.7		SNGA120408S01030A				\$				SNGA432S0330A
			2.7		SNGA120412S01030A				\$				SNGA433S0330A
			2.7		SNGA120412S02035A				ž				SNGA433S0835A
			2.8		SNGA120412S02035B					Ň	_		SNGA433S0835B
	09	3/8	2.1	.083	SNGA090308T01020B					Ň	_		SNGA322T0320B
			2.1		SNGA090312T01020B					Ň			SNGA323T0320B
	12	1/2	2.7	.106	SNGA120408T01020B	☆				Å			SNGA432T0320B
			2.7	.106	SNGA120412T01020B	☆				Ň	7		SNGA433T0320B
	12	1/2	3.4		SNMA120404S01020E						Ń		SNMA431S0320E
5			3.4	.134	SNMA120408S01020E						Ň		SNMA432S0320E
Finishing			3.4	.134	SNMA120412S01020E						2	2	SNMA433S0320E
ish													
iE													
-													
	09	3/8			SNGN090312S02520M		\overleftrightarrow						SNG323S1020M
	12	1/2			SNGN120412S02520M		☆						SNG433S1020M
					SNGN120416S02520M		☆						SNG434S1020M
	12	1/2			SNGN120408FD			☆				☆	SNG432FD
					SNGN120412FD			☆				☆	SNG433FD
					SNGN120416FD			公				☆	SNG434FD

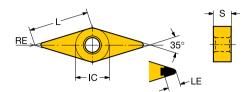
Negative basic-shape inserts

T-Max[®] P

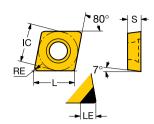

Triangular

							k	(ŀ	1		
		\wedge	Â					0			0	0	
		$ \longrightarrow $		١F	LE"	ISO CODE	7925	CB50	015	025	3B2(B2	ANSI CODE
		11	1/4	1.6		TNGA110304S01030A	7		2				TNGA221S0330A
			17 4	1.3		TNGA110308S01030A				∝ ☆			TNGA222S0330A
		16	3/8	2.9		TNGA160404S01030A				☆			TNGA331S0330A
				2.6		TNGA160408S01030A				±.			TNGA332S0330A
				2.0		TNGA160408S01530B				The state	3		TNGA332S0630B
				2.0	.079	TNGA160408S02035A				☆			TNGA332S0835A
	1253			2.8	.110	TNGA160408S02035B				ž	3		TNGA332S0835B
				2.3	.091	TNGA160412S01030A			\$	☆			TNGA333S0330A
				2.3	.091	TNGA160412S02035A				¥			TNGA333S0835A
		16	3/8	3.6	.142	TNMA160404S01020E					Ŕ	P	TNMA331S0320E
	2			3.3	.130	TNMA160408S01020E					삸	7	TNMA332S0320E
				3.0	.118	TNMA160412S01020E					Ŕ	2	TNMA333S0320E
		22	1/2	3.2		TNMA220408S01020E					公	2	TNMA432S0320E
βĹ				2.9	.114	TNMA220412S01020E					☆	7	TNMA433S0320E
ių													
Finishing													
Ε		16	3/8			TNGN160408S02520M	☆						TNG332S1020M
						TNGN160412S02520M	☆						TNG333S1020M
-											_		
		22	1/2			TNGN220412FD		☆				☆	TNG433FD
	S 7												
												-	

Negative basic-shape inserts T-Max® P

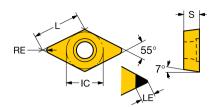

Trigon 80°

							κ		Н		
		\land	Â								
				LE	LE"	ISO CODE	7525	7015	025	525	ANSI CODE
		06	3/8	2.3	.091	WNGA060404S01030AWH	7	2	☆	~	WNGA331S0330AWH
		00	0,0	2.2	.087	WNGA060408S01030AWH			∽ ☆		WNGA332S0330AWH
		08	1/2	2.8		WNGA080404S01030AWH			\$		WNGA431S0330AWH
			=	2.7	.106	WNGA080408S01030AWH			☆ *		WNGA432S0330AWH
				2.7	.106	WNGA080412S01030AWH			\$		WNGA433S0330AWH
Ē		06	3/8	2.3	.091	WNGA060404T01030AWH		☆			WNGA331T0330AWH
				2.2	.087	WNGA060408T01030AWH		☆			WNGA332T0330AWH
		08	1/2	2.8	.110	WNGA080404T01030AWH		☆			WNGA431T0330AWH
				2.7	.106	WNGA080408T01030AWH		公			WNGA432T0330AWH
				2.7	.106	WNGA080412T01030AWH		公			WNGA433T0330AWH
		06	3/8	2.3		WNGA060404T01020BWG	☆				
5	A CONTRACTOR OF A CONTRACT			2.2	.087	WNGA060408T01020BWG	☆				
Finishing		08	1/2	2.8		WNGA080404T01020BWG	☆				WNGA431T0320BWG
ist				2.7	.106	WNGA080408T01020BWG	☆		_	☆	WNGA432T0320BWG
Ē											
_		00	0/0	0.0	001	W/NO A 0 CO 40 40 01 000 A			A		WNGA331S0330A
		06	3/8	2.3	.091	WNGA060404S01030A			☆		
	- 711	08	1/2	2.2		WNGA060408S01030A WNGA080404S01030A		☆ ☆			WNGA332S0330A WNGA431S0330A
		08	1/2	2.8		WNGA080404501030A WNGA080408S01030A		₩ 22			WNGA43150330A WNGA432S0330A
				2.7		WNGA080408S01030A			ਅ ਨ		WNGA43250530A WNGA432S0835A
				2.0		WNGA080408302033A		X AZ			WNGA43250655A WNGA433S0330A
				2.1	.100	12301030A		×	X		
-		06	3/8	2.3	.091	WNGA060404T01020B	24			☆	WNGA331T0320B
		00	0/0	2.2	.031	WNGA060404101020B	X7 E				
		08	1/2	2.8	.110	WNGA080404T01020B	X4 2			24	WNGA431T0320B
			.,_	2.7		WNGA080408T01020B	☆ >>				
				2.7		WNGA080412T01020B	24				

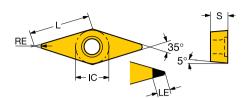

Negative basic-shape inserts

T-Max[®] P Rhombic 35°

				LE		ISO CODE				NSI CODE
		16	3/8	2.1	.083	VNGA160404S01020A		22	r V	/NGA331S0320A
_				4.2	.165	VNGA160404S01030A	24	Ň	۲V	/NGA331S0330A
inç	e. /			2.4	.094	VNGA160408S01020A		22	r V	/NGA332S0320A
Finishing				3.3	.130	VNGA160408S01030A	2	2	۲V	/NGA332S0330A
i Li				2.4	.094	VNGA160408S02035A	22	2	r V	/NGA332S0835A
-	-									
	-									


CoroTurn® 107 Rhombic 80°

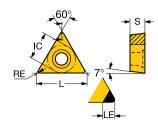
		09	€ +iC	LE 2.6	LE"	ISO CODE CCGW09T304S01020FWH	7525	7015	🕸 7025 🛛		ANSI CODE CCGW3(2.5)1S0320FWH
		00	0,0	1.8		CCGW09T304S01530FWH			☆		CCGW3(2.5)1S0630FWH
				2.6	.102	CCGW09T308S01020FWH			☆		CCGW3(2.5)2S0320FWH
				2.6	.102	CCGW09T312S01020FWH		☆			CCGW3(2.5)3S0320FWH
		06	1/4	1.8		CCGW060204T01030FWH			☆		CCGW2(1.5)1T0330FWH
			- 1-	2.0		CCGW060208T01030FWH		\$2	☆		CCGW2(1.5)2T0330FWH
	61	09	3/8	2.6		CCGW09T304T01020FWH		자 자		_	CCGW3(2.5)1T0320FWH
				2.5	.098	CCGW09T308T01020FWH		ŝ			CCGW3(2.5)2T0320FWH
-	-										
Finishing		06	1/4	1.8	.071	CCGW060204S01020F		\$	5Å7		CCGW2(1.5)1S0320F
list			., .	1.8	.071	CCGW060204S01030F				☆	CCGW2(1.5)1S0330F
È				2.0	.079	CCGW060208S01030F		\$			CCGW2(1.5)2S0330F
1		09	3/8	2.6	.102	CCGW09T304S01020F		\$	☆		CCGW3(2.5)1S0320F
				1.8	.071	CCGW09T304S01530F		公	☆	☆	CCGW3(2.5)1S0630F
				2.5	.098	CCGW09T308S01020F		公	☆		CCGW3(2.5)2S0320F
				2.0	.079	CCGW09T308S01530F		\$	☆	☆	CCGW3(2.5)2S0630F
				2.6		CCGW09T312S01020F		자 자			CCGW3(2.5)3S0320F
				2.3		CCGW09T312S01530F			☆		CCGW3(2.5)3S0630F
		06	1/4	1.5		CCGW060202T01030F		$\stackrel{\wedge}{\simeq}$	☆		CCGW2(1.5)0T0330F
				2.6		CCGW060204T01020F	公			☆	CCGW2(1.5)1T0320F
				1.8		CCGW060204T01030F		公			CCGW2(1.5)1T0330F
			- (a	2.0		CCGW060208T01030F		\$2			CCGW2(1.5)2T0330F
		09	3/8	2.6		CCGW09T304T01020F	☆.				CCGW3(2.5)1T0320F
				2.5	.098	CCGW09T308T01020F	☆			ŝ	CCGW3(2.5)2T0320F
									_		


CoroTurn® 107

Rhombic 55°

		11	3/8	LE 2.1	LE" .083	ISO CODE DCGW11T308S01020FWH	7525 🛪	7015	× 7025			NSI CODE CGW3(2.5)2S0320FWH
_	9	07	1/4	1.8	.071	DCGW070204S01020F			☆		DC	CGW2(1.5)1\$0320F
		07	1/4	1.8		DCGW070204S01020F		~		☆		CGW2(1.5)1505201 CGW2(1.5)150330F
				2.0	.079	DCGW070208S01030F		X7 Z	⊼ ∑	~		CGW2(1.5)2S0330F
		11	3/8	1.8		DCGW11T304S01020F		_	☆			CGW3(2.5)1S0320F
				1.8	.071	DCGW11T304S01530F		₩		☆		CGW3(2.5)1S0630F
				2.8	.110	DCGW11T308S01020F		\$	☆		DC	CGW3(2.5)2S0320F
5				2.1	.083	DCGW11T308S01530F		☆	☆	☆	DC	CGW3(2.5)2S0630F
hi				2.4	.094	DCGW11T312S01020F		$\stackrel{\sim}{\sim}$	公		DC	CGW3(2.5)3S0320F
Finishing				2.4	.094	DCGW11T312S01530F		삸			DC	CGW3(2.5)3S0630F
ίĽ		07	1/4	1.5	.059	DCGW070202T01030F		27	저		DC	CGW2(1.5)0T0330F
				3.2	.126	DCGW070204T01020F	☆			☆		CGW2(1.5)1T0320F
		11	3/8	3.4		DCGW11T302T01020F	\$			☆		CGW3(2.5)0T0320F
				3.2	.126	DCGW11T304T01020F	☆			☆	_	CWG3(2.5)1T0320F
				2.1	.083	DCGW11T308T01020F	☆	\$7		☆	DC	CGW3(2.5)2T0320F
_		4.4	3/8	0.0	4 4 4	DCMW11T304S01020E						
		11	3/8	3.6 3.4	.144	DCMW111304S01020E		_				CMW3(2.5)1S0320E
				3.4	.132	DCMW111308501020E				1		CMW3(2.5)2S0320E
										<u> </u>		

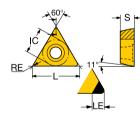
CoroTurn® 107 Rhombic 35°



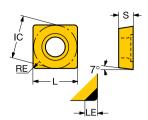
							25 <mark>X</mark>	15	25 H	25	ANSI CODE
		•••	→ic+	LE	LE"	ISO CODE	75	20	20	75	ANSI CODE
		16	3/8	4.2	.165	VBGW160404S01020F		☆	☆		VBGW331S0320F
				3.0	.118	VBGW160404S01030F			公		VBGW331S0330F
	C . /			3.1	.122	VBGW160404S01530F		☆			VBGW331S0630F
				3.3	.130	VBGW160408S01020F		☆	公		VBGW332S0320F
				3.1	.122	VBGW160408S01530F		☆	☆		VBGW332S0630F
g	-										
Finishing											
nis		16	3/8	4.2	.165	VBGW160404T01020F	☆			公	VBGW331T0320F
ΪĒ				3.3	.130	VBGW160408T01020F	☆			\$	VBGW332T0320F
	C. /										

Note: Grade 7025 is uncoated.

CoroTurn® 107

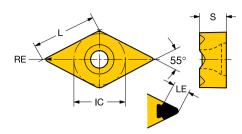

Triangular

						Κ		ŀ	1	
	\bigwedge		LE	LE"	ISO CODE	7525	7015	7025	7525 CB20	ANSI CODE
	09	7/32	3.2	.126	TCGW090202S01020F		☆	X		TCGW1.8(1.5)0S0320F
			3.0	.118	TCGW090204S01020F		☆	☆		TCGW1.8(1.5)1S0320F
			1.8	.071	TCGW090204S01030F		☆			TCGW1.8(1.5)1S0330F
			1.8		TCGW090204S01530F			☆	☆	TCGW1.8(1.5)1S0630F
	11	1/4	3.0		TCGW110204S01020F		☆	☆		TCGW2(1.5)1S0320F
			1.8		TCGW110204S01530F		公	☆		TCGW2(1.5)1S0630F
			2.7		TCGW110208S01020F		☆	☆		TCGW2(1.5)2S0320F
			2.0		TCGW110208S01530F		公	☆		TCGW2(1.5)2S0630F
			3.0		TCGW110304S01020F		☆	☆		TCGW221S0320F
			1.8		TCGW110304S01530F			☆		TCGW221S0530F
			3.0		TCGW110308S01020F		☆	☆		TCGW222S0320F
бu			3.0		TCGW110308S01530F			☆	☆	TCGW222S0630F
Finishing			3.2		TCGW110202T01020F	☆			☆	TCGW2(1.5)0T0320F
i,			3.0		TCGW110204T01020F	☆			☆	TCGW2(1.5)1T0320F
ш			2.8		TCGW110304T01020F				☆	TCGW221T0320F
			3.0	.118	TCGW110308T01020F				☆	TCGW222T0320F
		= /0.0								
	09	7/32	3.0		TCMW090204S01020E					TCMW1.8(1.5)1S0320E
	11	1/4	3.0		TCMW 110304S01020E					TCMW221S0320E
			3.0		TCMW 110308S01020E					TCMW222S0320E
			3.0		TCMW110204S01020E					TCMW2(1.5)1 S0320E
			3.0	.118	TCMW110208S01020E	1			*	TCMW2(1.5)2S0320E
	1									

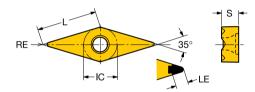

CoroTurn® 111

Triangular

				LE		ISO CODE	7525 <mark>স</mark>		1	7525 H	CB20	ANSI CODE
		11	1/4	3.0	.118	TPGW110304S01020F		公	☆			TPGW221S0320F
-				2.7	.106	TPGW110308S01020F		公	☆			TPGW222S0320F
ĭ												
Finishing												
Ë												
	0 1 7005 -											


Square

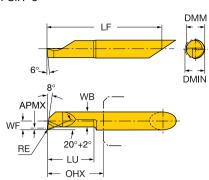
	14 21	,0	LE 1.8	.071	SCGW09T304S01030F	\$	×> 7025	7525	ANSI CODE SCGW3(2.5)150330F
			2.1 3.1			☆	1		SCGW3(2.5)2S0330F SCGW3(2.5)2S0630F
	09	3/8	2.8						SCGW3(2.5)1T0320F
									SCGW3(2.5)2T0320F
Y			3.1	.122	SCGW09T308T01530F			☆	SCGW3(2.5)2T0530F
	•			09 3/8 1.8 2.1 3.1	09 3/8 1.8 .071 2.1 .083 3.1 .122 09 3/8 2.8 .110 3.1 .122 .122	09 3/8 1.8 .071 SCGW09T304S01030F 2.1 .083 SCGW09T308S01030F 3.1 .122 SCGW09T308S01030F 09 3/8 2.8 .110 09 3/8 2.8 .110 SCGW09T304T01020F SCGW09T308T01020F	09 3/8 1.8 .071 SCGW09T304S01030F \$\$ 2.1 .083 SCGW09T308S01030F \$\$ \$\$ 3.1 .122 SCGW09T308S01530F \$\$ 09 3/8 2.8 .110 SCGW09T304T01020F \$\$ 09 3/8 2.8 .110 SCGW09T308T01020F \$\$	09 3/8 1.8 .071 SCGW09T304S01030F \$\$ \$\$ 09 3/8 1.8 .071 SCGW09T308S01030F \$\$ \$\$ 09 3/8 1.8 .071 SCGW09T308S01030F \$\$ \$\$ 09 3/8 1.8 .071 SCGW09T308S01030F \$\$ \$\$ 09 3/8 2.8 .112 SCGW09T308S01530F \$\$ \$\$ 09 3/8 2.8 .110 SCGW09T304T01020F \$\$ \$\$ 09 3/8 2.8 .110 SCGW09T308T01020F \$\$ \$\$	09 3/8 1.8 .071 SCGW09T304S01030F ☆ ☆ 2.1 .083 SCGW09T308S01030F ☆ ☆ ☆ ☆ 3.1 .122 SCGW09T308S01530F ☆ ☆ ☆ 09 3/8 2.8 .110 SCGW09T304T01020F ↓ ☆ 09 3/8 2.8 .110 SCGW09T304T01020F ↓ ☆


CoroTurn® TR

Rhombic 55°

								H	
				LE	LE"	ISO CODE	7015	7025	ANSI CODE
		13	13	3.0	.118	TR-DC1304S01020F	2	· 🕸	TR-DC1304S01020F
_				3.0	.118	TR-DC1308S01020F	公	\$	TR-DC1308S01020F
Finishing	0								
ish									
Ē									
-									

Rhombic 35°


				LE		ISO CODE		7025 4	ANSI CODE
		13	13	3.0		TR-VB1304S01020F			TR-VB1304S01020F
6				3.0	.118	TR-VB1308S01020F	☆	☆	TR-VB1308S01020F
ic	•								
Finishing									
ιĒ									

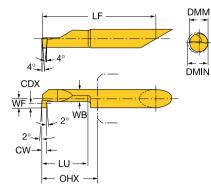
Note: Grade 7025 is uncoated.

For code key, see Turning tools catalogue 2011.

CoroTurn[®] XS inserts Turning

KAPR 98° PSIR -8°

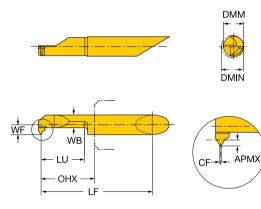
								Dimensio	ons, mm,	inch			
	CZC MS	APMX	DMIN	DMM	LU	Ordering code	7015	RE	WB	WF	LF	ОНХ	
	04	0.20	1.7	4	6.0	CXS-04T098-10-1706R	1	0.1	1.05	0.70	27.2	9	
	01	.008	.067	.157	.236		~	.004	.041	.028	1.073	.354	
L/		0.20	2.2	4	9.0	CXS-04T098-10-2209R	\$	0.1	1.55	0.95	27.2	12	
		.008	.087	.157	.354		~	.004	.061	.037	1.073	.472	
-		0.20	2.7	4	10.0	CXS-04T098-15-2710R	\$	0.2	2.05	1.20	27.3	13	
		.008	.106	.157	.394			.006	.081	.047	1.073	.512	
		0.20	3.2	4	15.0	CXS-04T098-15-3215R	5	0.2	2.55	1.45	32.3	18	
		.008	.126	.157	.591			.006	.100	.057	1.270	.709	
		0.20	3.7	4	15.0	CXS-04T098-15-3715R	\$	0.2	3.05	1.70	32.2	18	
		.008	.146	.157	.591			.006	.120	.067	1.270	.709	
		0.30	4.2	4	10.0	CXS-04T098-15-4210R	\$	0.2	3.45	1.95	27.3	13	
		.012	.165	.157	.394			.006	.136	.077	1.073	.512	
		0.30	4.2	4	15.0	CXS-04T098-15-4215R	2	0.2	3.45	1.95	32.3	18	
		.012	.165	.157	.591			.006	.136	.077	1.270	.709	
		0.30	4.2	4	20.0	CXS-04T098-15-4220R	5	0.2	3.45	1.95	37.3	23	
		.012	.165	.157	.787			.006	.136	.077	1.467	.906	
		0.30	4.2	4	25.0	CXS-04T098-15-4225R	\$	0.2	3.45	1.95	43.3	28	
		.012	.165	.157	.984			.006	.136	.077	1.703	1.102	
	05	0.50	5.2	5	10.0	CXS-05T098-20-5210R	\$	0.2	4.25	2.4	32.2	13	
		.020	.205	.197	.394			.008	.167	.096	1.270	.512	
		0.50	5.2	5	20.0	CXS-05T098-20-5220R	公	0.2	4.25	2.45	42.2	23	
		.020	.205	.197	.787			.008	.167	.096	1.663	.906	
		0.50	5.2	5	25.0	CXS-05T098-20-5225R	公	0.2	4.25	2.45	47.2	28	
		.020	.205	.197	.984			.008	.167	.096	1.860	1.102	
		0.50	5.2	5	30.0	CXS-05T098-20-5230R	5	0.2	4.25	2.45	57.2	33	
		.020	.205	.197	1.181			.008	.167	.096	2.254	1.299	
	06	0.50	6.2	6	15.0	CXS-06T098-20-6215R	公	0.2	5.25	2.95	37.2	18	
		.020	.244	.236	.591			.008	.207	.116	1.467	.709	
		0.50	6.2	6	20.0	CXS-06T098-20-6220R	5	0.2	5.25	2.95	42.2	23	
		.020	.244	.236	.787			.008	.207	.116	1.663	.906	
		0.50	6.2	6	25.0	CXS-06T098-20-6225R	☆	0.2	5.25	2.95	47.2	28	
		.020	.244	.236	.984			.008	.207	.116	1.860	1.102	
		0.50	6.2	6	30.0	CXS-06T098-20-6230R	☆	0.2	5.25	2.95	52.2	33	
		.020	.244	.236	1.181			.008	.207	.116	2.057	1.299	
		0.50	6.2	6	40.0	CXS-06T098-20-6240R	☆	0.2	5.25	2.95	62.2	43	
_		.020	.244	.236	1.575			.008	.207	.116	2.451	1.693	
	07	0.50	7.2	7	25.0	CXS-07T098-20-7225R	☆	0.2	6.25	3.45	47.2	28	
		.020	.283	.276	.984			.008	.246	.136	1.860	1.102	
		0.50	7.2	7	30.0	CXS-07T098-20-7230R	☆	0.2	6.25	3.45	52.2	33	
		.020	.283	.276	1.181	010 077000 00 70 00		.008	.246	.136	2.057	1.299	
		0.50	7.2	7	40.0	CXS-07T098-20-7240R	Ť	0.2	6.25	3.45	62.2	43	
		.020	.283	.276	1.575	OVO 077000 00 70505		.008	.246	.136	2.451	1.693	
		0.50	7.2	7	50.0	CXS-07T098-20-7250R	公	0.2	6.25	3.45	72.2	53	
		.020	.283	.276	1.968			.008	.246	.136	2.844	2.087	


R = Right hand

For code key, see Turning tools catalogue 2011

	Tolerances	s, mm			Tolerances	, inch		
TSYC	RETOLL	RETOLU	LLTOLL	LLTOLU	RETOLL"	RETOLU"	LLTOLL"	LLTOLU"
CXS-xxT098R/L	-0.02	0.02	-0.02	0.02	0008	.0008	0008	.0008

LLTOLL, LLTOLU Tolerances LF


CoroTurn[®] XS inserts Grooving

 CZC						15 H	Dimensio	ons, mm,	inch			
MS	CDX	DMIN	DMM	LU	Ordering code	.02	WB	WF	LF	OHX	CW	
06	1.8	6.2	6.0	15.0	CXS-06G100-6215R	\$	3.95	2.95	37.3	18	1.0	
	.071	.244	.236	.591			.156	.116	1.469	.709	.039	
	1.8	6.2	6.0	15.0	CXS-06G150-6215R	\$	3.95	2.95	37.3	18	1.5	
	.071	.244	.236	.591			.156	.116	1.469	.709	.059	

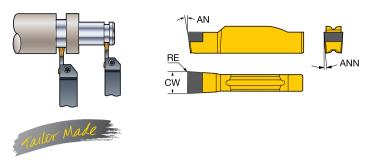
Threading

V-profile 60°

	070						5	Dimensio	ons, mm,	inch			
	CZC MS	APMX	DMIN	DMM	LU	Ordering code	701	WB	WF	LF	ОНХ	CF	
	06	0.55	6.2	6.0	15.0	CXS-06TH100VM-6215R	☆	3.55	2.95	37.3	18	0.12	
x 60m		.022	.244	.236	.591			.140	.116	1.469	.709	.005	
$\gamma \sim \gamma$		0.81	6.2	6.0	15.0	CXS-06TH150VM-6215R	岙	3.55	2.95	37.3	18	0.18	
		.032	.244	.236	.591			.140	.116	1.469	.709	.007	

For code key, see Turning tools catalogue 2011

	Tolerances	s, mm			Tolerances	s, inch		
TSYC	CWTOLL	CWTOLU	LLTOLL	LLTOLU	CWTOLL"	CWTOLU"	LLTOLL"	LLTOLU"
CXS-xxT098R/L	-0	0.05	-0.02	0.02	-0	.002	0008	.0008


LLTOLL, LLTOLU Tolerances LF

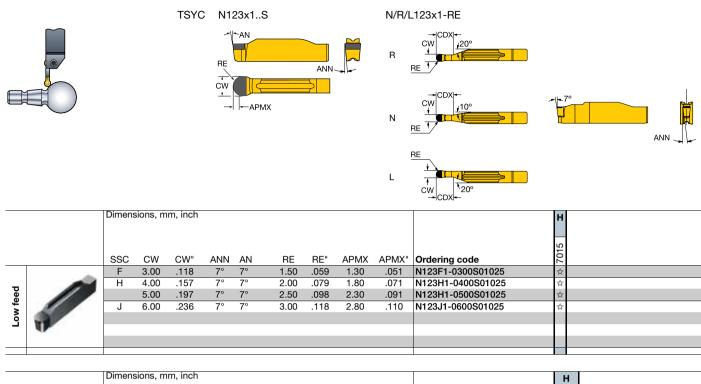
R = Right hand

R = Right hand

CoroCut[®] 1- and 2-edge

Grooving

	Dime	nsions	, mm, i	nch					ł	н	
	SSC	CW	CW"	ANN	AN	RE	RE"	Ordering code	7015	CB20	
	G	3.00	.118	7°	7°	0.20	.008	N123G1-0300-0002-GE		☆	
		3.18	.125	7°	7°	0.20	.008	N123G1-0318-0002-GE		公	
	Н	4.00	.157	7°	7°	0.20	.008	N123H1-0400-0002-GE		☆	
		4.70	.185	7°	7°	0.20	.008	N123H1-0470-0002-GE		☆	
-		5.00	.197	7°	7°	0.20	.008	N123H1-0500-0002-GE		☆	
feed	J	6.00	.236	7°	7°	0.20	.008	N123J1-0600-0002-GE		$\stackrel{\wedge}{\simeq}$	
	K	6.35	.250	7°	7°	0.20	.008	N123K1-0635-0002-GE		☆	
No.	L	8.00	.315	7°	7°	0.20	.008	N123L1-0800-0002-GE		$\stackrel{\wedge}{\simeq}$	
_	G	3.00	.118	7°	7°	0.40	.016	N123G1-030004S01025	公		
	Н	4.00	.157	7°	7°	0.40	.016	N123H1-040004S01025	公		
		5.00	.197	7°	7°	0.40	.016	N123H1-050004S01025	$\overrightarrow{\Sigma}$		
	J	6.00	.236	7°	7°	0.40	.016	N123J1-060004S01025	公		
	L	8.00	.315	7°	7°	0.80	.031	N123L1-080008S01025	公		

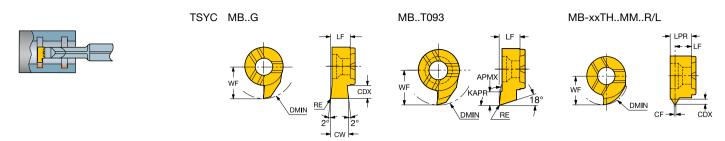

N = Neutral

For code key, see Turning tools catalogue 2011

	Tolerances	, mm			Tolerances	, inch		
TSYC	CWTOLL	CWTOLU	RETOLL	RETOLU	CWTOLL"	CWTOLU"	RETOLL"	RETOLU"
N123x1S	-0.02	0.02	-0.05	0.05	0008	.0008	002	.002

CoroCut[®] 1- and 2-edge

Profiling


		Dimer	nsions,	mm, in	ich								ł	Н	
		SSC	CW	CW"	ANN	RE	RE"	CDX	CDX"	APMX	APMX"	Ordering code	7015	CB20	
		н	2.00	.079	7°	1.00	.039	5.0	.197	0.80	.031	R/L123H1-0200-RE	☆		
			2.00	.079	7°	1.00	.039	5.0	.197	0.80	.031	N123H1-0200-RE	公		
	-														
feed															
νo		F	3.00	.118	7°	1.50	.059			1.30	.051	N123F1-0300-RE	公	☆	
Ľ	1		3.18	.125	7°	1.59	.063			1.40	.055	N123F1-0318-RE	☆		
		Н	4.00	.157	7°	2.00	.079			1.80	.071	N123H1-0400-RE	公	公	
			5.00	.197	7°	2.50	.098			2.30	.091	N123H1-0500-RE	☆	☆	
		J	6.00	.236	7°	3.00	.118			2.80	.110	N123J1-0600-RE	☆	$\stackrel{\wedge}{\simeq}$	
			6.35	.250	7°	3.18	.125			3.00	.118	N123J1-0635-RE	☆	삸	
		L	8.00	.315	7°	4.00	.157			3.80	.150	N123L1-0800-RE	☆	첞	
-															

For code key, see Turning tools catalogue 2011

N = Neutral, R = Right hand, L = Left hand

	Tolerance	s, mm			Tolerances	, inch		
TSYC	CWTOLL	CWTOLU	RETOLL	RETOLU	CWTOLL"	CWTOLU"	RETOLL"	RETOLU"
N123x1S	-0.02	0.02	-0.01	0.01	0008	.0008	0004	.0004
N123x1-RE	-0.02	0.02	-0.01	0.01	0008	.0008	0004	.0004
R/L123x1-RE	-0.02	0.02	-0.01	0.01	0008	.0008	0004	.0004

CoroCut[®] MB inserts

Grooving

							н	Dimens	sions, mr	n, inch	ı				
	SSC	RE	RE"	CDX	CDX"	Ordering code	7015	DMIN	DMIN"	WF	WF"	LF	LF"	CW	CW"
	07	0	0	2.8	.110	MB-07G100-00-11R	☆	11.00	.433	6.8	.268	3.9	.154	1.0	.039
		0	0	2.8	.110	MB-07G150-00-11R	*	11.00	.433	6.8	.268	3.9	.154	1.5	.059
(a)															

Turning

R = Right hand

R = Right hand

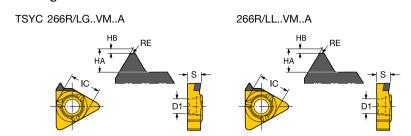
								н	Dimens	sions, mm	, inch				
	SSC	RE	RE"	APMX	APMX"	KAPR	Ordering code	7015	DMIN	DMIN"	WF	WF"	LF	LF"	
	07	0.20	.008	1.80	.071	93°	MB-07T093-02-10R	24	10.00	.394	5.6	.220	3.9	.154	
(UNX															

Threading

Metric 60°

								н	Dimer	nsions, m	m, incl	1					
	SSC	CDX	CDX"	CF	CF"	TP	Ordering code	7015	DMIN	DMIN"	WF	WF"	LF	LF"	LPR	LPR"	
1/8 P	07	0.5	.021	0.12	.005	1.0	MB-07TH100MM-10R	☆	10.00	.394	5.8	.228	3.2	.126	3.8	.150	
		0.8	.032	0.18	.007	1.5	MB-07TH150MM-10R	☆	10.00	.394	5.8	.228	3.0	.118	3.8	.150	
Y Y V																	
1/4 P																	

For code key, see Turning tools catalogue 2011


R = Right hand

	Tolerances	s, mm				Tolerances, inch							
TSYC	CWTOLL	CWTOLU	RETOLL	RETOLU	LLTOLL	LLTOLU	CWTOLL"	CWTOLU"	RETOLL"	RETOLU"	LLTOLL"	LLTOLU"	
MBG	-0	0.05			-0.02	0.02	-0	.002			0008	.0008	
MBT093			-0.02	0.02	-0.02	0.02			0008	.0008	0008	.0008	
MB-xxTHMMR/L					-0.02	0.02					0008	.0008	

LLTOLL, LLTOLU Tolerances LF

CoroThread® 266

V-profile 60° Non-topping Threading

External

								Н	Dimensio	ns, mm, in	ch			
			TPN	TPX	TPIN	ΤΡΙΧ	Ordering code	7015	НА	НВ	RE	IC	D1	S
1/8 P	16	3/8	1.0	2.0	12	24	266RG-16VM01A001EE	것	1.68	0.14	0.13	9.53	4.4	3.97
1/8 P									.066	.006	.005	.375	.173	.156
	16	3/8	1.5	3.0	8	16	266RG-16VM01A002EE	쟈	2.64	0.20	0.20	9.53	4.4	3.97
Y M V	1								.104	.008	.008	.375	.173	.156
1/4 P														
							1							

Internal

							Н	Dimensio	ns, mm, in	ch			
		TPN	TPX	TPIN	TPIX	Ordering code	7015	НА	НВ	RE	IC	D1	S
16	3/8	1.5	3.0	8	16	266RL-16VM01A002EE	\$	2.54	0.09	0.09	9.52	4.4	3.97
								.100	.004	.004	.375	.173	.156
		16 3/8						→ +/C + TPN TPX TPIN TPIX Ordering code	→ +/C + TPN TPX TPIN TPIX Ordering code PA	Image: wide wide wide wide wide wide wide wide	16 3/8 1.5 3.0 8 16 266RL-16VM01A002EE ☆ 2.54 0.09 0.09	Image: Application of the system TPN TPIN TPIX Ordering code Image: Application of the system Image: Application of the	Image: constraint of the state of

For code key, see Turning tools catalogue 2011

266R = Right hand

To make life easier, a new standard is developed

ISO 13399 is an international standard that will simplify the exchange of data for cutting tools. You will notice a slight difference, through the new parameters and descriptions of each tool.

For the first time ever, there is a standardized way of describing product data regarding cutting tools. When all tools in the industry share the same parameters and definitions, communicating tool information between software systems becomes very straightforward.

What does this mean to you?

Basically, it means that your systems can talk to ours, as they all speak the same language. Download product data from our web site and use it directly in your CAD/ CAM software to assemble tools that you use in production. No need to look for information in catalogues and interpret data from one system to another. Imagine how much time this will save you!

Parameters in Hard Part Turning 2012

ANNClearance angle minorAPMXDepth of cut maximumBNFace land widthCDXCutting depth maximumCFSpot chamferCWCutting widthCWTOLLCutting width lower toleranceCWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMINShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge lengthLFEuction and lengthLTOLULength tolerance lowerLTOLULength tolerance lowerLTOLULength tolerance upperLPRProtructing lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLUCorner radius lower toleranceSSCInsert seat size codeTPNThreads per inch minimumTPINThreads per inch maximumTPNThread sper inch maximumTPNThreads per inch maximumTPNThreads per inch maximumTPNThreads per inch maximumTPNThreads per inch maximumTPNThread sper inch maximumTPNThreads per inch maximumTPNThreads per inch maximum	Short name	Preferred Name
BNFace land widthCDXCutting depth maximumCFSpot chamferCWCutting widthCWTOLLCutting width lower toleranceCWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLTOLLLength tolerance lowerLTOLULength tolerance upperLPRProtructing lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceSSCInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitch minimumTPXMaximum thread pitchTPNThreads per inch maximumTPXMaximum thread pitchTPXKaper dick maximumTPXMaximum thread pitchTWThreads per inch minimumTPXKaper dick maximumTPXKaper dick maximumTPXKaper dick maximumTPXKaper dick maximumTPXKaper dick maximumTPX <th>ANN</th> <th>Clearance angle minor</th>	ANN	Clearance angle minor
CDXCutting depth maximumCFSpot chamferCWCutting widthCWTOLLCutting width lower toleranceCWTOLUCutting width upper toleranceCWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge effective lengthLFFunctional lengthLTOLLLength tolerance lowerLTOLLLength tolerance lowerLTOLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceSSCInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitch minimumTPNThread pitchTPNThread pitch minimumTPXMaximum thread pitchTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWSCClamping widthWTWeight of item	APMX	Depth of cut maximum
CFSpot chamferCWCutting widthCWTOLLCutting width lower toleranceCWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge effective lengthLECutting edge effective lengthLFFunctional lengthLTOLULength tolerance upperLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSSCInsert seat size codeTPThreads per inch minimumTPNThreads per inch minimumTPNThreads per inch minimumTPNThreads per inch minimumTPNThreads per inch minimumTPNThread pitchTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWSCClamping widthWTWeight of item	BN	Face land width
CWCutting widthCWTOLLCutting width lower toleranceCWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge effective lengthLECutting edge effective lengthLFFunctional lengthLTOLLLength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radius lower toleranceRETOLUCorner radius lower toleranceSSCInsert seat size codeTPThread pitchTPNThreads per inch maximumTPXMaximum thread pitchTPNThreads per inch maximumTPXMaximum thread pitchTPNThreads per inch maximumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFWeight of item	CDX	Cutting depth maximum
CWTOLLCutting width lower toleranceCWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge ffective lengthLFFunctional lengthLTOLLLength tolerance lowerLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSSCInsert thicknessSSCInsert seat size codeTPNThreads per inch minimumTPIXThreads per inch minimumTPIXThreads per inch minimumTPXMaximum thread pitchTPNThreads per inch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWSCClamping widthWTWeight of item	CF	Spot chamfer
CWTOLUCutting width upper toleranceCZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge effective lengthLFFunctional lengthLFFunctional lengthLTOLULength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSSCInsert thicknessSSCInsert seat size codeTPThread pitchTPINThread pitch minimumTPIXMaximum thread pitchTPINThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	CW	Cutting width
CZC MSConnection size code machine sideD1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLTOLLLength tolerance lowerLTTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitch minimumTPIXThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWSCClamping widthWTWeight of item	CWTOLL	Cutting width lower tolerance
D1Fixing hole diameterDMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge effective lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLUUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSSCInsert stat size codeTPThread pitch minimumTPIXThread pitch minimumTPXMaximum thread pitchTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	CWTOLU	Cutting width upper tolerance
DMINMinimum bore diameterDMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitch minimumTPXMaximum thread pitchTPNThread pitchTPNThread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	CZC MS	Connection size code machine side
DMMShank diameterGBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLUUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSSCInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitchTPNThread pitchTPNThread pitchTPNThread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	D1	Fixing hole diameter
GBFace land angleHAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	DMIN	Minimum bore diameter
HAThread height theoreticalHBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSInsert thicknessSSCInsert size codeTPNThread pitchTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	DMM	Shank diameter
HBThread height differenceICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSSCInsert thicknessSSCInsert seat size codeTPThread pitchTPNThread pitch minimumTPXMaximum thread pitchTPNThread pitch minimumTPXTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	GB	Face land angle
ICInscribed circle diameterKAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	HA	Thread height theoretical
KAPRTool cutting edge angleLCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	HB	Thread height difference
LCutting edge lengthLECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	IC	Inscribed circle diameter
LECutting edge effective lengthLFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	KAPR	Tool cutting edge angle
LFFunctional lengthLLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	L	Cutting edge length
LLTOLLLength tolerance lowerLLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	LE	Cutting edge effective length
LLTOLULength tolerance upperLPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPXTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	LF	Functional length
LPRProtruding lengthLUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	LLTOLL	Length tolerance lower
LUUsable length (max. recommended)OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	LLTOLU	s
OHXOverhang maximumRECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	LPR	Protruding length
RECorner radiusRETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	LU	Usable length (max. recommended)
RETOLLCorner radius lower toleranceRETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThread pitch minimumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	OHX	Overhang maximum
RETOLUCorner radius upper toleranceSInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThreads per inch maximumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	RE	Corner radius
SInsert thicknessSSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThreads per inch maximumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item	RETOLL	Corner radius lower tolerance
SSCInsert seat size codeTPThread pitchTPINThreads per inch minimumTPIXThreads per inch maximumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		
TPThread pitchTPINThreads per inch minimumTPIXThreads per inch maximumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		
TPINThreads per inch minimumTPIXThreads per inch maximumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		
TPIXThreads per inch maximumTPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		•
TPNThread pitch minimumTPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		•
TPXMaximum thread pitchTSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		•
TSYCTool style codeWBBody widthWFFunctional widthWSCClamping widthWTWeight of item		•
WBBody widthWFFunctional widthWSCClamping widthWTWeight of item		
WFFunctional widthWSCClamping widthWTWeight of item		
WSC Clamping width WT Weight of item		,
WT Weight of item		
-		
W1 Insert width		-
	W1	Insert width

www.sandvik. coromant.com

Head office: AB Sandvik Coromant SE-811 81 Sandviken, Sweden www.sandvik.coromant.com E-mail: info.coromant@sandvik.com

C-2940:137 ENG/01 © AB Sandvik Coromant 2012.11

