

Multi-Form Thread Mills are a fast way to threadmill a part. Since they use the entire length of cut in a helical interpolation environment, specific machining parameters are needed to avoid deflection and breakage. These tools can be used successfully in materials ranging from Aluminum up to and including Hardened Steels.

Speeds & Feeds calculations:

- 1. Determine the correct SFM and Chip Load (IPT) for the cutter and material
- 2. Calculate the Speed (RPM) and Linear Feed (IPM)
- 3. Adjust Linear Feed to account for helical interpolation of internal or external threads
- 4. Determine correct number of radial passes at full axial depth

Example: Tool #V547751 to machine a 1/2-20 internal thread in 17-4 stainless steel

- 1. From Speeds & Feeds chart (next page), SFM is 200 and Chip Load (IPT) is .00101
- 2. Calculate Speed (RPM) and Linear Feed (IPM)

$$\label{eq:RPM} \begin{aligned} \text{RPM} &= (\text{SFM} \times 3.82) \ / \ \text{Cutter Diameter} \\ &= (200 \times 3.82) \ / \ .370 \\ &= 2065 \end{aligned}$$

$$\label{eq:Linear Feed (IPM)} = \text{RPM} \times \text{IPT} \times \text{Number of Flutes} \\ &= 2065 \times .00101 \times 4 \\ &= 8.3 \end{aligned}$$

3. Adjust Linear Feed (use Table 1 to determine Major Thread Diameter)

```
Adj Internal Feed = [(Major Thread Dia - Cutter Dia) / Major Thread Dia] x Linear Feed
                  = [(.562 - .370) / .562] \times 8.3
Adj External Feed = [(Major Thread Dia + Cutter Dia) / Major Thread Dia] x Linear Feed
                   = [(.562 + .370) / .562] \times 8.3
                   = 13.8
```

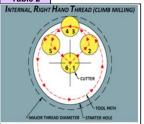
4. Determine Number of Radial Passes using Table 1

For Easy Machinability = 1 Radial Pass at full Axial Depth For Moderate Machinability = 2 Radial Passes at full Axial Depth For Difficult Machinability = 2 Radial Passes at full Axial Depth

Definitions:

Easy Machinability materials include Non-Ferrous alloys and Leaded Steels Moderate Machinability materials include 200/300/400 Stainless Steels and Steels up to 35 Rc Difficult Machinability materials include Inconel, Titanium and Steels 36-45 Rc

5. Conclusion


In this example, the tool would run at 2065 RPM, 2.8 IPM and make 2 Radial Passes

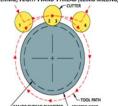
Setup & Use:

- 1. Check software and input proper feed values (Linear or Adjusted)
- 2. Choke up on tool
- 3. Minimize runout (consider entire system of spindle, collet, holders etc)
- 4. Minimize all vibration (consider tool holding, work holding, rpm "sweet spot" etc)
- 5. To break in the tool, reduce feed rates by 75% on the on the first one to two holes
- 6. Cutter should engage part using an arcing toolpath to avoid shock loading (see Table 2)
- 7. Climb mill for best finish and tool life (see Table 2)
- 8. Flush chips with coolant to avoid recutting

Table 1										
Thread	Major		er of Radial F							
Size	Thread	Easy	Moderate	Difficult						
0-80	Diameter 0.060	Machinabilty 2	Machinabilty 3	Machinabilty 4						
1-64	0.000	2	3	4						
2-56	0.086	2	3	3						
3-48	0.099	2	3	3						
4-40	0.112	2	3	3						
5-40	0.125	2	3	3						
5-44	0.125	2	3	3						
6-32	0.138	2	2	3						
8-32	0.164	2	2	3						
8-36	0.164	1	2	2						
10-24	0.190	2	2	3						
10-28	0.190	1	2	2						
10-32	0.190	1	2	2						
12-24 12-28	0.216 0.216	2 1	2 2	2						
1/4-20	0.210	2	2	3						
1/4-28	0.250	1	1	2						
5/16-18	0.312	2	2	3						
5/16-16	0.312	1	1	2						
3/8-16	0.375	2	2	3						
3/8-24	0.375	1	1	2						
7/16-14	0.437	2	2	3						
7/16-20	0.437	1	1	2						
1/2-13	0.500	2	2	3						
1/2-20	0.500	1	1	2						
9/16-12	0.562	2	2	3						
9/16-18	0.562	1	2	2						
5/8-11 5/8-18	0.625 0.625	2 1	2 2	3 2						
3/4-10	0.025	2	2	3						
3/4-12	0.750	1	2	3						
3/4-16	0.750	1	2	2						
7/8-9	0.875	2	2	3						
7/8-14	0.875	1	2	2						
1-8	1.000	2	3	4						
1-12	1.000	2	2	2						
1-14	1.000	2	2	2						
NPT/NPTF	0.040	4	4	0						
1/16-27	0.312	1	1	2						
1/8-27 1/4-18	0.405	1 1	1 1	2 2						
3/8-18	0.540 0.675	1	1	2						
1/2-14	0.840	1	2	3						
3/4-14	1.050	1	2	3						
1-11.5	1.315	1	2	3						
2-11.5	2.375	1	2	3						
METRIC										
M4.5 x .75	.177 (4.5mm)	1	2	2						
M5 X .8	.197 (5mm)	1	2	2						
M6 X .75	.236 (6mm)	1	2	2						
M6 X 1	.236 (6mm)	1	2	2						
M8 X .75 M8 X 1.25	.315 (8mm)	1 2	2 2	2						
M10 X 1.25	.315 (8mm) .394 (10mm)	1	1	3 2						
M10 X 1.5	.394 (10mm)	2	2	3						
M12 X 1.3	.472 (12mm)	1	1	2						
M12 X 1.75	.472 (12mm)	2	2	3						
M14 X 1.5	.551 (14mm)	1	2	2						
M14 X 2.0	.551 (14mm)	2	2	3						
M16 X 1	.630 (16mm)	1	2	2						
M16 X 2.0	.630 (16mm)	2	2	3						
M18 X 1.5	.709 (18mm)	1	2	2						
M18 X 2	.709 (18mm)	2	2	3						
M20 X 2.5	.787 (20mm)	2	2	3						

Table 2

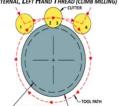
- Step 1-2: Cutter moves into position
 Step 2-3: Cutter engages part with arcing
 tool path while "2" feeds up
 from bottom
 Step 3-4: Cutter moves helically one rotation
- Step 4-5: Cutter exits part along arcing tool path
- while maintaining "Z" feed Step 5-6: Cutter returns to center


- Step 1-2: Cutter moves into position Step 2-3: Cutter engages part with arcing tool path while "Z" feeds down
- tool path while <u>"72" feeds down</u>
 <u>from top</u>

 Step 3-4: Cutter moves helically one rotation

 Step 4-5: Cutter exits part along arcing tool path
 while maintaining "2" feed

 Step 5-6: Cutter returns to center


EXTERNAL, RIGHT HAND THREAD (CLIMB MILLING)

- Step 1-2: Cutter engages part with arcing tool path while "Z" feeds down
- from top

 Step 2-3: Cutter moves helically one rotation
 Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

EXTERNAL, LEFT HAND THREAD (CLIMB MILLING)

- Step 1-2: Cutter engages part with arcing tool path while "Z" feeds up
- from bottom
 Step 2-3: Cutter moves helically one rotation Step 3-4: Cutter exits part along arcing tool path while maintaining "Z" feed

Characteristics: UN, Metric

Product Notes:

Long Flute Multi-Form Thread Milling Cutters are for internal threading only. Hardened Steels:

For 46-54 Rc: 130 SFM, 75% of IPT (from 29-37 Rc section) 3-4 Radial Passes at full Axial Depth

For 55-60 Rc:

80 SFM, 50% of IPT (from 29-37 Rc section) 4-5 Radial Passes at full Axial Depth

					4-3 Kadie	ai rasses at iu	ii Axiai Depti	•							
Material Guide				Chip Load (IPT) By Cutter Diameter											
		Hardness	SFM	3/64	1/16	5/64	3/32	1/8	3/16	1/4	5/16	3/8	1/2	5/8	3/4
Carbon Steel	10XX, 11XX, 12XX, 12LXX, ASTM A27, ASTM A36	29-37 Rc (279-344 HBn)	450	.00009	.00012	.00015	.00018	.00024	.00054	.00072	.00100	.00120	.00160	.00200	.00240
Low Alloy Steel	13XX, 41XX, 43XX, 51XX, 86XX, 93XX	29-37 Rc (279-344 HBn)	550	.00009	.00012	.00015	.00018	.00024	.00054	.00072	.00112	.00135	.00180	.00225	.00270
Tool Steel	A, L, O, P, W series	29-37 Rc (279-344 HBn)	325	.00010	.00013	.00016	.00020	.00026	.00039	.00053	.00088	.00106	.00141	.00176	.00211
	A, E, O, I , W series	38-45 Rc (353-421 HBn)	200	.00008	.00011	.00014	.00017	.00022	.00034	.00045	.00075	.00090	.00120	.00150	.00180
	D, H, M, T, S series	29-37 Rc (279-344 HBn)	225	.00009	.00012	.00015	.00018	.00024	.00036	.00048	.00080	.00096	.00128	.00160	.00192
		38-45 Rc (353-421 HBn)	180	.00008	.00010	.00013	.00015	.00020	.00031	.00041	.00068	.00082	.00109	.00136	.00163
Austenitic Stainless Steel	Nitronic 50, Nitronic 60, 301, 303, 304, 304L, Incoloy 27-7MO, 316, 316L, 321, 347	29-37 Rc (279-344 HBn)	400	.00009	.00012	.00015	.00018	.00024	.00054	.00072	.00112	.00135	.00180	.00225	.00270
Martensitic & Ferritic Stainless Steel		29-37 Rc (279-344 HBn)	350	.00009	.00012	.00015	.00018	.00024	.00054	.00072	.00100	.00120	.00160	.00200	.00240
	403, 410, 416, 420, 440, 430, 446	38-45 Rc (353-421 HBn)	200	.00008	.00011	.00014	.00017	.00022	.00034	.00045	.00075	.00090	.00120	.00150	.00180
PH Stainless Steel	15-5, 17-4, Carpenter 450,	29-37 Rc (279-344 HBn)	200	.00009	.00012	.00015	.00018	.00024	.00036	.00048	.00080	.00096	.00128	.00160	.00192
	Carpenter 465	38-45 Rc (353-421 HBn)	160	.00008	.00010	.00013	.00015	.00020	.00031	.00041	.00068	.00082	.00109	.00136	.00163
Nickel Alloy	Hastelloy C-22, Inconel 625,	29-37 Rc (279-344 HBn)	90	.00008	.00011	.00014	.00016	.00022	.00033	.00044	.00065	.00078	.00104	.00130	.00156
	Waspaloy, René 41, Inconel 718, Incoloy 20	38-45 Rc (353-421 HBn)	70	.00007	.00009	.00012	.00014	.00019	.00028	.00037	.00055	.00066	.00088	.00111	.00133
Titanium Alloy	Ti 3Al-2.5V, Ti 6Al-4V, Ti 10V-2Fe-3Al	29-37 Rc (279-344 HBn)	275	.00010	.00013	.00016	.00020	.00026	.00039	.00053	.00077	.00092	.00123	.00154	.00185
		38-45 Rc (353-421 HBn)	150	.00008	.00011	.00014	.00017	.00022	.00034	.00045	.00065	.00079	.00105	.00131	.00157
Wrought Aluminum Alloy	2014, 5062, 6061, 7050, 7075, 7475	≤ 28 Rc (≤ 271 HBn)	1200	.00012	.00016	.00020	.00024	.00032	.00067	.00090	.00137	.00165	.00220	.00275	.00330
	5% - 8% Si (4XXX)		1000	.00011	.00014	.00018	.00021	.00029	.00061	.00081	.00124	.00149	.00198	.00248	.00297
	8% - 12% Si (4XXX)		800												
Cast Aluminum Alloy	319.0, 328.0, 355.0, 360.0, 380.0, 383.0, 390.0, 520.0, 535.0	≤ 28 Rc (≤ 271 HBn)	750	.00012	.00016	.00020	.00024	.00032	.00067	.00090	.00137	.00165	.00220	.00275	.00330
	3% - 5% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		750	00011	.00014	.00018	.00021	.00029	.00061	.00081	.00124	.00149	.00198	.00248	.00297
	5% - 8% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		700												
	8% - 12% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		650												
	12% - 16% Si (3XX, A3XX, C3XX, 4XX, A4XX, B4XX)		475												
Copper Alloy	Cu-ETP, CuBe2, CuZn30, CuZn36Pb3, CuZn10, CuSn5	≤ 28 Rc (≤ 271 HBn)	450-1000	.00012	.00015	.00019	.00023	.00031	.00055	.00073	.00115	.00138	.00184	.00231	.00277
Magnesium Alloys		≤ 28 Rc (≤ 271 HBn)	1500	.00012	.00016	.00020	.00024	.00032	.00067	.00090	.00137	.00165	.00220	.00275	.00330
Zinc Alloys			800	.00012	.00010	.00020	.00024	.00032	.00007	.00050	.00137	.00103	.00220	.00273	.00330

General Notes:

All posted speed and feed parameters are suggested starting values that may be increased given optimal setup conditions. Chip loads reflect uncoated cutters and may be increased 10%-20% if coated. For ferrous materials with hardness < 28 Rc, chip loads can be increased 10%-20%.

If you require additional information, Valor Holemaking has a team of technical experts available to assist you through even the most challenging applications. Please contact us at 800-888-8888 or Valortech@harveyperformance.com.

WARNING: Cutting tools may shatter under improper use. Government regulations require use of safety glasses and other appropriate safety equipment in the vicinity of use.